
Overhead control in real-time global scheduling

M.Naeem Shehzad, A.M Déplanche, Yvon Trinquet, Richard Urunuela
IRCCyN, site de l’Ecole Centrale de Nantes

Nantes, France.
{Naeem.Shehzad,Anne-Marie.Deplanche,Yvon.Trinquet,Richard.Urunuela}@irccyn.ec-nantes.fr

Abstract

A number of optimal algorithms are known for schedul-
ing of periodic tasksets with implicit deadlines on real-
time multiprocessor systems. These algorithms belong
to the branch of global scheduling which allows the mi-
gration of tasks between the processors. Though these
are theoretically optimal, questions are raised about their
practical implementation because optimality is achieved
at cost of excessive scheduling points, migrations and pre-
emptions. Controlling the overhead to a possible mini-
mum level is one of the critical areas of research. This
paper is specifically concerned with particular global
scheduling algorithms that combine fluid scheduling and
deadline partitioning, while guaranteeing optimality. It
proposes the utilization of some heuristics to improve their
performance by reducing the number of migrations and
preemptions. Our simulation results validate our ap-
proach and show a significantly reduced number of mi-
grations and preemptions when compared to a previous
basic version of such a scheduling algorithm1.

1. Introduction

The utility of real-time systems are getting more and
more common in the human life. From basic consumer
products like mobile phones, microwaves up to automo-
biles and space sciences, they have got exceptional im-
portance everywhere. This revolution requires increased
processing speed. However, the speed of a single proces-
sor may not be increased beyond certain limits mainly be-
cause of high power consumption and too much heat dissi-
pation [18]. It led the researchers to find some alternatives.
The multiprocessing is one of the solutions to this problem
where two or more processors are engaged to enhance the
effective speed to carry out the workload in more compre-
hensive and efficient way. Currently multiprocessor ar-
chitectures are easily available for embedded systems be-
cause the major manufacturers of processors are produc-
ing low priced multiprocessor architectures. The advent

1This work has been supported by the French Agence Nationale de
la Recherche through the RESPECTED project (Contract ANR-2010-
SEGI-002). See http://anr-respected.laas.fr

of multicore architecture where multiple processor cores
are placed on a single chip, is quite significant in this re-
gard. Real-time operating system or RTOS which man-
ages such hardware architectures is drawing attention of
the researchers.

The design of real-time systems is generally based on
a set of concurrent periodic tasks with some hard tim-
ing requirements. The scheduler is an important part of
the RTOS which is responsible for managing the available
processing resources for the given taskset. In a multipro-
cessor system, it has to decide which task will execute at
which time and on which processor, such that all tasks
meet their timing constraints. The two main types of real-
time multiprocessor scheduling strategies are: partitioned
scheduling and global scheduling.

Partitioned scheduling is the most studied and rela-
tively matured scheduling technique. In this type of
scheduling, the taskset is partitioned and each task sub-
set is allocated to a processor. After allocation of tasks to
their processor, migration to a different processor is not
allowed [16, 17]. Hence, after allocation, it becomes a
simple problem of uniprocessor scheduling. However, the
allocation of tasks to the processors is same as bin-packing
problem which is known to be NP hard in strong sense
[11]. The advantages of partitioning include low schedul-
ing overhead, improved average cache performance and
reutilization of uniprocessor algorithms. Main disadvan-
tage of the partitioned scheduling is that it is inherently
sub-optimal and therefore does not guarantee the com-
plete utilization of the resources. There are some tasksets
which are schedulable only when they are not partitioned.

In global scheduling, there is a single queue of ready
tasks for all the processors. The scheduler is responsible
for scheduling all the tasks. The migration of tasks be-
tween the processors is allowed. A task can execute on
one processor and, after a preemption, can be resumed on
a different processor. A task may be migrated after com-
pleting one complete invocation, called a job, or even dur-
ing a job. This increases the schedulability which allows
better utilization of resources. Moreover, global schedul-
ing is better for dynamic systems where there is frequent
arrival and leaving of tasks. An important advantage is
that a number of global scheduling algorithms are found to
be optimal for periodic tasks with implicit deadlines. An

optimal algorithm for a task model is the one which can
schedule all the tasksets of that model that can be sched-
uled by any other algorithm [6].

Proportionate fair, or simply PFair, was presented by
Baruah et al. in 1996 [22]. It is a global scheduling algo-
rithm which guarantees a 100% system utilization for pe-
riodic tasksets with implicit deadlines. It is based on the
concept of fairness which means that each task gets a pro-
cessor share proportional to its utilization factor at each
instant. Thus at any time t, time allocated to a task Ti with
utilization factor Ti.u either is �t ∗ Ti.u� or �t ∗ Ti.u�. In
PFair, the time can be viewed as divided into small in-
tervals of equal lengths called quanta. All the tasks are
scheduled at the start of each quantum. It results that
PFair achieves the optimality at a very huge runtime over-
head [23] due to frequent scheduling points, migrations
and preemptions. PF , PD and PD2 are three PFair al-
gorithms which are proven to be optimal [22]. ERFair [2],
which is a work-conserving technique, and the PFair stag-
gered model [14], which uses non-synchronized quanta
for scheduling, are extended forms of PFair.

A number of recent papers have combined the notion
of fluid scheduling with the one of deadline partitioning to
still guarantee optimality while improving performance of
PFair. In [19], such approaches are qualified as DP-Fair.

Boundary fair or BFair, is a scheduling technique pro-
posed by Zhu et al. [27] that belongs to this category and
that is optimal for periodic tasksets with implicit dead-
lines. The scheduling is done only at the boundaries which
are the deadline times of tasks, and fairness is met only
at those boundaries. It reduces the number of schedul-
ing points as compared to that of PFair. BFair shows bet-
ter performance than PFair when the tasks in the tasksets
are fewer. When there are 100 tasks in the tasksets, Zhu
showed [27] that BFair has only 48 % scheduling points
when compared with PD, a well known PFair algorithm.

LLREF [12] is also a DP-Fair technique based on an
interesting abstraction of time and local remaining execu-
tion time. It is optimal for periodic tasksets with implicit
deadlines. The scheduling is done at the boundaries sim-
ilar to that of BFair. As it will be explained later, the dif-
ferences come where the execution time units for the tasks
are computed and allocated. LRE − TL [10] which uses
an improved dispatching technique and E − TNPA [9]
which deals with work-conserving scheduling are exten-
sions of LLREF .

The study of effects of migration and preemption on
different aspects of processor scheduling is quite com-
mon [5, 25, 26]. It is even more important in case of
global scheduling which allows free migration between
processors. The migrations and preemptions increase the
schedulability because there are tasksets which are sched-
uled only when the tasks are allowed to migrate or pre-
empt. But on the other hand, the main objection on global
scheduling is the overhead due to the frequent schedul-
ing points, migrations and preemptions. Migration causes
cache miss and excessive load on the data buses between

the processors while preemptions lead towards context
switches. Theoretically the cost of preemption and mi-
gration is considered to be negligible but practically when
these occur frequently their effect in the system cannot be
neglected. On some modern multicore architectures, the
cost of migration is much lower than in past but still a non-
zero value. In short, frequent migrations and preemptions
in the system lead towards an increase in worst case ex-
ecution times of the tasks which results in the missing of
deadlines.

Some researchers have worked in the domain of over-
head control due to preemption and migration in global
scheduling. [13] used the technique of delayed preemp-
tion for preemption control in non-optimal global schedul-
ing. Aoun et al. [3] used the processor affinity technique
to reduce the number of migration in PFair scheduling.
Megel et al. [21] proposed a linear programming formu-
lation and a local scheduler technique to reduce number
of preemption and migration for optimal global schedul-
ing algorithms.

The motivation behind this article is to explore and uti-
lize simple heuristics to reduce overhead due to migration
and preemption upto minimum possible level while keep-
ing the optimality. The first heuristic controls the migra-
tions while the second reduces the number of preemptions
in the system. We have used these heuristics with a stan-
dard non-work conserving DP-Fair algorithm explained
hereafter with the help of the time and nodal remaining
execution time plane, or simply TN − Plane abstraction
model of Funaoka et al. [8]. The heuristics are described
in accordance with this TN − Plane model.

System Model. We consider that T is a set of N
synchronous periodic tasks Ti where i = 1, 2...N to be
scheduled on M identical processors. Each task Ti has
a period Ti.p equal to its relative deadline Ti.d (implicit
deadline), an execution time Ti.e and utilization factor
Ti.u. (which is Ti.e/Ti.p) in range (0, 1]. U is sum of
utilization factors of all the tasks in the taskset. Each task
in such a system is released repeatedly in accordance with
its period Ti.p. Each such invocation is called a job of the
task. We assume that all the tasks are independent, i.e.
they do not share any common resource and do not have
any precedence with each other. The costs of migration,
preemption and context switch are assumed to be already
added in execution times. A processor can not execute
more than one task at any given time and a single task
cannot execute on more than one processor at any given
time.

The rest of the paper is organized as follows. Section
2 gives an overview of DP-Fair by using the abstraction
of TN − Plane . Section 3 discusses dispatching pro-
cess inside a TN−plane . Section 4 presents the simple
heuristics we propose and finally experimental results are
given in section 5.

2. Overview of DP-Fair scheduling and TN-
Plane

Time and Nodal remaining execution time Plane
(TN − Plane) is a visual abstraction to represent execu-
tion of tasks on multiprocessors which allows insightful
and analytical understanding. It has been introduced by
Funaoka et al. [8]. The figure 1 shows the basic idea be-
hind a TN − Plane . In this figure, time is represented
on horizontal axis and task remaining execution time on
vertical axis. The core idea for fair techniques of track-
ing the fluid schedule leads to represent it with a constant
slope of −Ti.u as shown by the dotted line. It corresponds
to the ideal execution of the job. The practical execution,
represented by the solid line, has a slope -1 when task is
executing and slope 0 while task is waiting. The job re-
leased at t0 must finish its execution Ti.e just up to its
deadline t0 + Ti.d. Its execution between these two dates
can be viewed as the movement of a token. The current
location of the token at time t signifies the remaining exe-
cution time of the task at that time Ti.e(t). When the job
starts, the token has Ti.e units to consume. When the job
finishes, the token has nothing to consume because it is on
the zero level.

Figure 1. Representation of fluid and real
executions.

When N tasks are considered in the system, their fluid
schedules are made as shown in the figure 2. By recall-
ing the result of Hong and Leung [15] establishing that no
optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on two or more processors,
all DP-Fair strategies chose to subdivide time into slices
where all the tasks have the same (local) deadline. The
boundaries of these slices are all the deadlines (same as ar-
rivals due to the implicit deadline assumption) of all tasks

Figure 2. TN planes.

and are abbreviated as b0,b1...bk etc. The distance between
any two boundaries is also called a node as shown in figure
2.

A right angled isosceles triangle can then be considered
between any two consecutive boundaries for each task.
The right most vertex of the triangle coincides with the
fluid schedule. Since triangles for all the tasks are of the
same size in a node, task execution domains for all the
tasks may be represented as a single overlapped isosce-
les triangle that constitutes a TN − Plane . Figure 2
shows three TN − Planes between boundaries bk and
bk+3. In a TN − Plane, the execution times on verti-
cal axis for the tasks are not the actual remaining execu-
tion times of their jobs but are termed as nodal remaining
execution times. These times are the local ones that are
to be consumed by the end of current TN − Plane so
as the fluid execution for tasks is ensured at boundaries.
The TN − Plane makes it possible to envision the en-
tire scheduling activity over time as scheduling in repeated
TN−Planes of various sizes, so that feasibly scheduling
on a single TN −Plane results in a feasible schedule for
all TN − Planes across time [4, 12, 19].

There are two aspects that need to be considered for
scheduling in a TN-Plane: allocating nodal remaining ex-
ecution times for all tasks, and dispatching these execution
time units within the node among the processors.

• For allocation nodal remaining execution times,
when only non work-conserving scheduling is con-
sidered, two main possibilities exist. First, the nodal
remaining execution time for each task can be com-

puted exactly proportional to the task utilization fac-
tor. It is the case for LLREF [10] where a task Ti

with utilization factor Ti.u gets Ti.u∗L units of exe-
cution time where L is the length of the current node.
The resulting value may be a non-integer one which
causes a practical problem (due to the hardware char-
acteristics of processors, execution time unit num-
bers should be integral multiples of the highest pre-
cision timer). The second option counters this prob-
lem. BFair algorithm proposed by Zhu et al [27] al-
locates some mandatory execution time units to each
task and one optional time unit to some eligible tasks,
so as to approximate as much as possible the fluid ex-
ecutions. Thus nodal remaining execution times are
defined as integer numbers.

• The dispatching within nodes can be either static or
dynamic. For example, in the BFair algorithm [27],
all the dispatching decisions are computed in ad-
vance for all the nodes over an hyper period (due to
the periodic assumption). At runtime, they are sim-
ply implemented. For each node dispatching, it uses
the McNaughton algorithm [20] that sequentially
packs tasks to processors. Inversely, the LLREF al-
gorithm makes its dispatching decisions over time:
at the beginning of each node, as well as at some
secondary scheduling events that may occur within
a node (as it will be explained in the next section).

This division of the scheduling process into two indepen-
dent parts allows to concentrate on the two parts sepa-
rately. It has resulted in the finding of some hybrid algo-
rithms with improved characteristics as compared to orig-
inal ones. Thus Cho et al. [7] have used the BFair for the
computation of nodal remaining execution times as pro-
posed by Zhu et al. [27] but have used a dynamic tech-
nique for dispatching tasks to processors inspired from the
LRE−TL [10]. They have shown that it avoids some un-
necessary migrations.

The next section explains in detail the dispatching as-
pect of task scheduling inside a TN −Plane since this is
the part which deals with a major part of preemptions and
migrations.

3. Dispatching within a TN-Plane

The execution of tasks in a single TN − Plane is
shown in figure 3. We recall that it is the overlapped
isosceles triangle of all the tasks inside which their execu-
tion status can be shown as tokens. The left side represents
the nodal remaining execution time while the oblique side
of the TN−Plane is called No Nodal Laxity Diagonal (or
in short NNLD). Nodal remaining execution time of task
Ti is noted as Ti.l. The scheduling objective is to make all
tokens arrive at the rightmost vertex of the TN − Plane
with zero nodal remaining execution time. Such an arrival
is said nodally feasible.

Figure 3. Taskset scheduling in a TN-Plane
on two processors: P1 and P2.

At any point, at most M tasks can be executed on the
M processors, i.e. at most M tokens can move simulta-
neously diagonally. The task switching in TN − Plane
comes when a token hits either the domain with the zero
nodal remaining execution time (bottom hitting event or
event B) or hits the NNLD (ceiling hitting event or event
C). These events B or C define secondary scheduling
events. The following general rules have to be observed
while scheduling within a TN − Plane (demarcated by
the boundaries bk and bk+1):

• Task with zero nodal laxity is given maximum prior-
ity. A running task (with non zero nodal laxity) has
to be preempted and replaced by the previous one.
Actually, when a token hits that side, it implies that
the task does not have any local laxity. Thus, if it is
not selected immediately, then it cannot satisfy the
objective of nodal feasibility.

• Stop the task when its nodal remaining execution
time is completely consumed (in case of non work-
conserving context). The task is preempted and is
replaced by another possibly waiting task.

• Do not let more than M−
�N

i=1(Ti.u)(bk+1 − bk)
units of time idle between bk and bk+1.

While respecting these rules, the scheduling of a taskset
in the TN − Plane is nodally feasible if and only if the
sum of nodal remaining utilization factors of all the tasks
is less than or equal to the capacity of the processors [7].

N�

i=1

(
Ti.l(bk)

bk+1 − bk
) ≤ M (1)

If this condition is not satisfied then more than M to-
kens strike against NNLD simultaneously out of which
only M tokens are selected to execute and the rest move
out of the TN − Plane . This point of arrival of more
than M tasks on NNLD is also termed as critical point.
The taskset is not nodally feasible if there is any critical
point in the TN − Plane.

4. Overhead control

Once the nodal execution times for the taskset are com-
puted and the simple scheduling rules are established, one
can see that there is still room to design complemen-
tary dispatching strategies so as to reduce the number of
task preemptions and migrations. Our intention is to ex-
plore this space and to evaluate the resulting improvement
in term of overhead. Our proposal has been guided by
two observations and gives rise to two related heuristics.
These heuristics are used with an optimal global schedul-
ing algorithm called DP-Fair. The DP-Fair uses BFair al-
gorithm [27] for computation of nodal remaining execu-
tion time units while it uses the dynamic dispatching tech-
nique discussed in section 3 for task allocation. The first
heuristic results from the standard assumption of instanta-
neous preemptions and migrations. Then in theory it does
not matter which processor is hosting a given task, but
only which tasks are running at a given time. That is why
most algorithms give no explicit prescription about how
to assign tasks to processors. Thus, heuristic 1 deals with
the task to processor assignment criterion. The second one
comes from the fact where it has been shown that the or-
der in which the M tasks are selected for execution is not
important, provided that they have non-zero nodal remain-
ing execution times [10]. Thus, heuristic 2 is concerned
with the running task selection criterion. The heuristics
are described with the same notations as used by Funk et
al. [10].

4.1. Heuristic 1
Usually, running tasks are assigned to the available pro-

cessors without considering their previous histories. Ac-
cording to heuristic 1, a task keeps the record of the pro-
cessor on which it was executed last time and then an
affinity relation exists between task and processor. Heuris-
tic 1 takes into account this relation and if possible, tries
to assign a newly running task to the same processor on
which it was scheduled the last time. This heuristic is ap-
plied at main scheduling points i.e. those that coincide
with time boundaries (or start of a TN − Plane) as well
as at secondary scheduling events (event B or event C oc-
currences).

Algorithm
Suppose

• HB- List of running tasks. Maximum size of HB is
M

• getLastProc()- returns the processor on which task
was executed last time

• P - An object that represents a processor

1. for(each newly task T inserted into HB)

2. P = T .getLastProc() ;

3. if (P is idle)

4. execute T on P ;

5. else

6. execute T on any idle processor;

7. end for

The computational complexity of heuristic 1 is O(M).

4.2. Heuristic 2
At a scheduling point in a TN − Plane all the ready

tasks have equal priority and atmost M of them can be
chosen arbitrarily for execution. Heuristic 2 attempts to
control the preemptions at these scheduling points. Ac-
cording to this technique, the tasks executing on a pro-
cessor just before the scheduling are given priority to re-
execute provided they still are ready. By continuing such
executions, some unnecessary preemptions are avoided.
This heuristic is applied at main scheduling points.

Algorithm
Suppose

• HB- List of running tasks. Maximum size of HB is
M

• ReadyList- is the list containing unsorted ready
tasks

Inputs HB , ReadyList
Outputs HB

1. for (i= 1 →HB .size)

2. T=HB .getTask(i);

3. if(T � ReadyList)

4. ReadyList.remove(T);

5. else

6. T.preempt();

7. HB .remove(T);

8. if (ReadyList.size() !=0)

9. T = ReadyList.getfirst();

10. HB .add(T);

11. end for

12. if(HB .size < M)

13. As usual take tasks from ReadyList if available
and complete the HB

The computational complexity of heuristic 2 is O(M).
The for loop checks each task in the HB that contains
tasks that were previously running at bk . If it contains
a task which is still ready in the next node (line 3), it will
keep this task, otherwise it is removed from the running
task list(line 7).

5. Experimentation

We performed a series of simulation based experiments
to find the effect of using the above mentioned heuristics
with DP-Fair. We used STORM [1, 24] as simulation tool.
STORM is a freeware software tool developed in our re-
search team. It is able to simulate the behavior of prede-
fined or user defined real-time multiprocessor scheduler
and to evaluate their performance by computing specified
metrices on the schedules they construct. Tasksets with
uniformly distributed periods and execution times with
constant value of taskset utilization factor were obtained
using a MATLAB program. STORM takes these tasksets
as input and schedules each of them according to a given
scheduling algorithm. We observed the scheduling of each
taskset upto the LCM of the periods of the tasks. The
number of tasks in each taskset was in the range of 2.1
and 2.5 times the number of processors. The interval for
the task periods is (3, 20]. A point on a graph is drawn by
taking an average of results of experiments on 30 tasksets.
The vertical axis of each graph represents the specified
parameter of an algorithm as an average of the same pa-
rameter of DP-Fair as a function of number of processors
on the horizontal axis.

Each graph represents, for the studied parameter, the
average ratio (in percentage) of its value given by the DP-
Fair algorithm applying the concerned heuristic over the
one given by the original DP-Fair algorithm, as a function
of number of processors on the horizontal axis.

For the first set of experiments, a multiprocessor sys-
tem with 2, 4, 6, 8 and 10 processors was considered. It
compares the effects of using different heuristics with DP-
Fair algorithm. The sum of utilization factor of taskset
was equal to the number of processors. We first used
heuristic 1, then heuristic 2 and finally both the heuris-
tics with the DP-Fair to find their effect on the migrations
and preemptions. When we used both the heuristics in
sequence, we called the resulting algorithm as hybrid al-
gorithm. The order of the heuristics does not make any
difference. The results of this set of experiments are given
in figure 4 and figure 5.

The results show that heuristic 1 reduces more than 50
% of the migrations of original algorithm. It does not

Figure 4. Migration control

Figure 5. Preemption control

affect the number of preemptions. On the other hand,
heuristic 2 not only reduces the number of preemptions by
15 % on average but also reduces the migration of tasks to
some extent. The reduction in migration is due to the fact
that tasks which continue their executions due to heuristic
2 may have been migrated to different processors in case
of preemption. Hybrid algorithm keeps the advantages of
both heuristic 1 and heuristic 2.

In the second set of experiments, we tested the perfor-
mance of hybrid algorithm varying the sum of utilization
factors U . A multiprocessor system with 2, 4, 6 and 8
processors was considered. The graphs in the figure 6 and
figure 7 show the results. The hybrid algorithm improves
the migration control with a reduction in utilization fac-
tor. Smaller the utilization factor, higher the probability
for a processor to get free and better are the chances for
the tasks to re-execute on the same processor.

With relatively lower utilization factor, the number of
tasks which have consumed their nodal execution time be-
fore the main scheduling points (due to the non work con-
serving behaviour of the scheduling) increases letting idle
units before these points. The algorithm gets disable in
this situation and finally preemption is not controlled.

Figure 6. Migration control of hybrid algo-
rithm with variable utilization factor

Figure 7. Preemption control of hybrid algo-
rithm with variable utilization factor

6. Conclusion

In this article, we have proposed the utilization of a
couple of heuristics to improve the performance of opti-
mal global scheduling by reducing the number of migra-
tions and preemptions. Our simulation results have val-
idated our approach and showed a significant reduction
in the number of migrations and preemptions when com-
pared to a previous basic version of such a scheduling al-
gorithm. We tried various heuristics and finally we found
the combination of above mentioned heuristics to be quite
efficient. There may exist some more methods for the im-
provement. Experimentation with addition of some more
techniques may be interesting to further enhance the effi-
ciency in terms of overhead reduction. Utilization of such
overhead controlling techniques may increase the accep-
tance of global scheduling because overhead is the main
objection on these algorithms.

References

[1] http://storm.rts-software.org.

[2] J. Anderson and A. Srinivasan. Early-release fair
scheduling. In the Proceedings of the 12th Euromi-
cro Conference on Real-Time Systems, pages 35–43,
2000.

[3] D. Aoun, A-M Déplanche, and Y. Trinquet. Pfair
scheduling improvement to reduce interprocessor
migrations. In the Proceedings of 16th Interna-
tional Conference on Real-Time and Network Sys-
tems, 2008.

[4] K. Bletsas B. Andersson and S. K. Baruah. Schedul-
ing arbitrary-deadline sporadic task systems on mul-
tiprocessors. In the Proceedings of the Real-Time
Systems Symposium, pages 385–394, 2008.

[5] A. Block and J. Anderson. Accuracy versus migra-
tion overhead in real-time multiprocessor reweight-
ing algorithms. In the Proceedings of the 12th In-
ternational Conference on Parallel and Distributed
Systems, pages 355–364, 2006.

[6] G. Buttazzo. Hard Real-time Computing Systems:
Predictable Scheduling Algorithms And Applica-
tions (Real-Time Systems Series). Springer-Verlag
TELOS, 2004.

[7] H. Cho, Binoy Ravindran, and E. Douglas Jensen. T-
l plane-based real-time scheduling for homogeneous
multiprocessors. Journal of Parallel and Distributed
Computing, pages 225 – 236, 2010.

[8] Kenji Funaoka, Shinpei Kato, and Nobuyuki Ya-
masaki. Energy-efficient optimal real-time schedul-
ing on multiprocessors. In the Proceedings of the
11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, pages 23–30, 2008.

[9] Kenji Funaoka, Shinpei Kato, and Nobuyuki Ya-
masaki. Work-conserving optimal real-time schedul-
ing on multiprocessors. In the Proceedings of the
20th Euromicro Conference on Real-Time Systems
ECRTS, pages 13–22, 2008.

[10] S. Funk and Vijaykant Nadadur. Lre-tl an opti-
mal multiprocessing scheduling algorithm for spo-
radic task sets. In Proceedings of the 17th Interna-
tional Conferenece of Real-Time and Network sys-
tems Paris, pages 26–27, 2009.

[11] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[12] B. Ravindran H. Cho and E. Douglas Jensen. An
optimal real-time scheduling algorithm for multipro-
cessors. In the Proceedings of the IEEE Interna-
tional Real-Time Systems Symposium, pages 101–
110, 2006.

[13] Chiahsun Ho and Shelby H. Funk. A hybrid pri-
ority multiprocessor scheduling algorithm, work in
progress. In the Proceedings of the 31st Real-Time
Systems Symposium (RTSS), 2010.

[14] P. Holman and J. Anderson. The staggered model:
Improving the practicality of pfair scheduling. In the
Proceedings of the 24th IEEE International Real-
Time Systems symposium(RTSS’03), 2003.

[15] K.S. Hong and J.Y.-T. Leung. On-line scheduling of
real-time tasks. IEEE Transactions on Computers,
41:1326–1331, 1992.

[16] L. George J. Goossens I. Lupu, P. Courbin. Multi-
criteria evaluation of partitioning schemes for real-
time systems. In the Proceedings of the 15th IEEE
International Conference on Emerging Techonolo-
gies and Factory Automation, 2010.

[17] J.L. Diaz D.F. Garcia J.M. Lopez, M. Garcia. Uti-
lization bounds for multiprocessor rate-monotonic
scheduling. Real-Time Systems, 24:5–28, 2003.

[18] D. Lammers. Intel cancels tejas, moves to dual-core
designs. EE Times, May 7th 2004.

[19] G. Levin, Shelby Funk, Caitlin Sadowski, Ian Pye,
and Scott Brandt. Dp-fair: A simple model for un-
derstanding optimal multiprocessor scheduling. In
the Proceedings of the 22nd Euromicro Conference
on Real-Time Systems, pages 3–13, 2010.

[20] R. McNaughton. Scheduling with deadlines and loss
functions. Management Sciences, 6:1–12, 1959.

[21] Thomas Megel, Renaud Sirdey, and Vincent David.
Minimizing task preemptions and migrations in mul-
tiprocessor optimal real-time schedules. Proceed-
ings of the31st IEEE Real-Time Systems Symposium,
pages 37–46, 2010.

[22] N. C.G.Plaxton S.Baruah and D.Varvel. Proportion-
ate progress:a notion of fairness in resource alloca-
tion. Algorithmica, 15:600–625, 1996.

[23] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. In Proceedings of
the 34th ACM Symposium on Theory of Computing,
pages 189–198, 2001.

[24] R. Urunuela, A-M. Déplanche, and Y. Trinquet.
Storm - a simulation tool for real-time multipro-
cessor scheduling evaluation. In the Proceed-
ings of IEEE International Conference on Emerging
Technology and Factory Automation, ETFA, Bilbao,
2010.

[25] C. Y. Yang, Jian-Jia Chen, and Tei-Wei Kuo. Pre-
emption control for energy-efficient task scheduling
in systems with a dvs processor and non-dvs devices.
In the Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications, pages 293–300, 2007.

[26] G. Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority scheduling
with fixed preemption points. In the Proceedings of
the 16th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applica-
tions, pages 71–80, 2010.

[27] D. Zhu, Daniel Mosse, and Rami Melhem. Multiple-
resource periodic scheduling problem: How much
fairness is necessary? In the Proceedings of the 24th
IEEE International Real-Time Systems Symposium,
pages 142–151, 2003.

	. Introduction
	. Overview of DP-Fair scheduling and TN-Plane
	. Dispatching within a TN-Plane
	. Overhead control
	. Heuristic 1
	. Heuristic 2

	. Experimentation
	. Conclusion

